“D.X.1, the first in our trio of detox supplements, is the main driver for pushing the detoxification process for phase 1 and 2. Environmental sensitivity and toxicity can cause a plethora of symptoms and issues due to what is being popularized as “epigenetics”. D.X.1 helps alleviate this by upregulating excretion, binding and mobilizing harmful compounds that have built up in the body from the environment.”

D.X.1™Advanced Support for Detoxification and Antioxidant Protection
D.X.1™ synergistically combines nutrients, herbal extracts, and other compounds to enhance the body’s detoxification processes. This formula is specifically designed to combat free radicals, detoxify harmful substances—including heavy metals—and support phase II liver detoxification by raising glutathione levels.
D.X.1™ also aids in the production of metallothionein, a cysteine-rich protein with potent antioxidant properties and the capacity to bind heavy metals such as cadmium and copper.¹²
Metallothionein demonstrates even greater free radical quenching potential than glutathione for specific radicals, like the hydroxyl radical.¹ Collectively, the ingredients in D.X.1™ target heavy metal toxicity and improve the mobilization and excretion of harmful compounds, particularly when used alongside standard chelating agents.³
Key Features of D.X.1™
Lipoic Acid: A sulfur-containing compound with amphipathic antioxidant properties, effective in both water- and lipid-based environments.⁴,⁵ Lipoic acid (LA) regenerates vitamins E and C, glutathione (GSH), and coenzyme Q10.⁵,⁶ It binds free, redox-active metals such as copper, zinc, lead, mercury, and cadmium.⁵,⁷
Selenium and Zinc: Selenium supports the synthesis of glutathione peroxidase (GPx) and thioredoxin reductase, which protect against oxidative damage.¹⁰,¹¹ Selenium also mitigates mercury toxicity and supports proper thyroid function.¹²⁻¹⁵ Zinc, in combination with selenium, aids in metallothionein synthesis.
Manganese: A cofactor for mitochondrial superoxide dismutase (MnSOD), manganese protects mitochondrial membranes from lipid peroxidation and supports detoxification in the liver and kidneys.¹⁷⁻²⁰
Molybdenum: Essential for enzymes involved in detoxification, such as sulfite oxidase and aldehyde oxidase.²¹,²² Molybdenum helps metabolize sulfur-containing amino acids and pharmaceutical drugs, supporting individuals with sulfite sensitivity.²³,²⁵
Turmeric and Green Tea Extracts: These compounds induce CYP450 enzymes and the Nrf2 pathway, enhancing phase II detoxification and antioxidant gene expression.¹⁶,²⁶,²⁷
Vitamin E Isomers: Patented DeltaGold® delta and gamma tocotrienols offer fat-soluble antioxidant protection for cell membranes and lipoproteins. Vitamin E supplementation prevents glutathione oxidation and increases tissue levels of GSH.²⁸,²⁹
Vitamin C: A potent antioxidant that works synergistically with glutathione to recycle dehydroascorbate back to ascorbate. Vitamin C, combined with vitamin E, enhances antioxidant enzyme activity and reduces oxidative stress markers.²⁸,³⁰
Grape Seed Extract: Contains oligomeric proanthocyanidins (OPCs), which are potent antioxidants that protect against cadmium-induced damage and other environmental toxins.³¹,³⁷
N-Acetyl-L-Cysteine (NAC) and L-Leucine: NAC is a primary source of cysteine, essential for glutathione synthesis and detoxification.³⁹ Leucine, when combined with cysteine, prevents mercury from crossing the blood-brain barrier and protects the central nervous system from heavy metal toxicity.⁴⁰
Why Choose D.X.1™?
Combines key nutrients and botanicals to support detoxification and antioxidant defense
Enhances phase II detoxification and glutathione synthesis
Protects against heavy metal toxicity and supports safe excretion of harmful compounds
Includes patented and bioavailable ingredients for maximum efficacy
REFERENCES:
Ruttkay-Nedecky B, Nejdl L, Gumulec J, et al. The role of metallothionein in oxidative stress. Int J Mol Sci. 2013;14(3):6044–6066. Published 2013 Mar 15. doi:10.3390/ijms14036044.
Cai L, Klein JB, Kang YJ. Metallothionein inhibits peroxynitrite-induced DNA and lipoprotein damage. J Biol Chem. 2000 Dec 15;275(50):38957-60. doi:10.1074/jbc.C000593200.
Patrick L. Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev. 2003 May;8(2):106-28.
Rochette L, Ghibu S, Richard C, Zeller M, Cottin Y, Vergely C. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol Nutr Food Res. 2013 Jan;57(1):114-25.
Gorąca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, Skibska B. Lipoic acid - biological activity and therapeutic potential. Pharmacol Rep. 2011;63(4):849-58.
Packer L, Witt EH, Tritschler HJ. Alpha-Lipoic acid as a biological antioxidant. Free Radic Biol Med. 1995 Aug;19(2):227-50.
Biewenga GP, Haenen GR, Bast A. The pharmacology of the antioxidant lipoic acid. Gen Pharmacol. 1997 Sep;29(3):315-31.
Zempleni J, Trusty TA, Mock DM. Lipoic acid reduces the activities of biotin-dependent carboxylases in rat liver. J Nutr. 1997 Sep;127(9):1776-81. doi:10.1093/jn/127.9.1776.
Zempleni J, Mock DM. Biotin biochemistry and human requirements. J Nutr Biochem. 1999 Mar;10(3):128-38.
Oregon State University. Linus Pauling Institute Micronutrient Information Center. Selenium. Available at: https://lpi.oregonstate.edu/mic/minerals/selenium. Accessed Oct 7, 2019.
Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011;15(7):1957–1997. doi:10.1089/ars.2010.3586.
Spiller HA. Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity. Clin Toxicol (Phila). 2018 May;56(5):313-326. doi: 10.1080/15563650.2017.1400555.
Ralston NV, Raymond LJ. Dietary selenium's protective effects against methylmercury toxicity. Toxicology. 2010 Nov 28;278(1):112-23. doi: 10.1016/j.tox.2010.06.004.
Falnoga I, Tusek-Znidaric M. Selenium-mercury interactions in man and animals. Biol Trace Elem Res. 2007 Dec;119(3):212-20. doi:10.1007/s12011-007-8009-3.
Berry MJ, Ralston NV. Mercury toxicity and the mitigating role of selenium. Ecohealth. 2008 Dec;5(4):456-9. doi:10.1007/s10393-008-0204-y.
Hodges RE, Minich DM. Modulation of metabolic detoxification pathways using foods and food-derived components: a scientific review with clinical application. J Nutr Metab. 2015;2015:760689. doi:10.1155/2015/760689.
Li L, Yang X. The essential element manganese, oxidative stress, and metabolic diseases: links and interactions. Oxid Med Cell Longev. 2018;2018:7580707. Published 2018 Apr 5. doi:10.1155/2018/7580707.
Holley AK, Bakthavatchalu V, Velez-Roman JM, St Clair DK. Manganese superoxide dismutase: guardian of the powerhouse. Int J Mol Sci. 2011;12(10):7114–7162. doi:10.3390/ijms12107114.
Oregon State University. Linus Pauling Institute Micronutrient Information Center. Manganese. Available at: https://lpi.oregonstate.edu/mic/minerals/manganese. Accessed Oct 7, 2019.
Zimmermann M. Burgerstein’s Handbook of Nutrition. Thieme; New York, 2001: p72.
Dalvie D, Di L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther. 2019 Sep;201:137-180. doi: 10.1016/j.pharmthera.2019.05.011.
Montefiori M, Jørgensen FS, Olsen L. Aldehyde Oxidase: Reaction mechanism and prediction of site of metabolism. ACS Omega. 2017;2(8):4237–4244. doi:10.1021/acsomega.7b00658.
Ranguelova K, Bonini MG, Mason RP. (Bi)sulfite oxidation by copper, zinc-superoxide dismutase: Sulfite-derived, radical-initiated protein radical formation. Environ Health Perspect. 2010;118(7):970–975. doi:10.1289/ehp.0901533.
Tutuncu B, Kuçukatay V, Arslan S, Sahin B, Semiz A, Sen A. Alteration of drug metabolizing enzymes in sulphite oxidase deficiency. J Clin Biochem Nutr. 2012;51(1):50–54. doi:10.3164/jcbn.11-79.
Steriti R. Sulfite sensitivity. 2012. Available at: https://pdfs.semanticscholar.org/28b8/c883898be98c24dd5889d35563c1b72ffa4b.pdf. Accessed Oct 7, 2019.
Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401–426. doi:10.1146/annurev-pharmtox-011112-140320.
Paladino S, Conte A, Caggiano R, Pierantoni G, M, Faraonio R. Nrf2 pathway in age-related neurological disorders: Insights into microRNAs. Cell Physiol Biochem. 2018;47:1951-1976. doi:10.1159/000491465.
Gould RL, Pazdro R. Impact of supplementary amino acids, micronutrients, and overall diet on glutathione homeostasis. Nutrients. 2019;11(5):1056. doi:10.3390/nu11051056.
Oregon State University. Linus Pauling Institute Micronutrient Information Center. Vitamin E. Available at: https://lpi.oregonstate.edu/mic/vitamins/vitamin-E. Accessed Oct 7, 2019.
Karajibani M, Hashemi M, Montazerifar F, Dikshit M. Effect of vitamin E and C supplements on antioxidant defense system in cardiovascular disease patients in Zahedan, southeast Iran. J Nutr Sci Vitaminol (Tokyo). 2010;56(6):436-40. doi:10.3177/jnsv.56.436.
Songsermsakul P, Pornphairin E, Porasuphatana S. Comparison of antioxidant activity of grape seed extract and fruits containing high α-carotene, vitamin C, and E. International Journal of Food Properties. 2013;16(3).
Fine AM. Oligomeric proanthocyanidin complexes: history, structure, and phytopharmaceutical applications. Altern Med Rev. 2000 Apr;5(2):144-51.
Nazima B, Manoharan V, Miltonprabu S. Grape seed proanthocyanidins ameliorate cadmium-induced renal injury and oxidative stress in experimental rats through the up-regulation of nuclear related factor 2 and antioxidant responsive elements. Biochem Cell Biol. 2015 Jun;93(3):210-26. doi:10.1139/bcb-2014-0114.
Alkhedaide A, Alshehri ZS, Sabry A, Abdel-Ghaffar T, Soliman MM, Attia H. Protective effect of grape seed extract against cadmium-induced testicular dysfunction. Mol Med Rep. 2016;13(4):3101–3109. doi:10.3892/mmr.2016.4928.
El-Tarras Ael-S, Attia HF, Soliman MM, El Awady MA, Amin AA. Neuroprotective effect of grape seed extract against cadmium toxicity in male albino rats. Int J Immunopathol Pharmacol. 2016;29(3):398–407. doi:10.1177/0394632016651447.
Liu W, Xu C, Sun X, et al. Grape seed proanthocyanidin extract protects against perfluorooctanoic acid-induced hepatotoxicity by attenuating inflammatory response, oxidative stress and apoptosis in mice. Toxicol Res (Camb). 2015;5(1):224–234. doi:10.1039/c5tx00260e.
U.S. National Library of Medicine. National Center for Biotechnology Information. Perfluorooctanoic acid. Available
at: https://pubchem.ncbi.nlm.nih.gov/compound/Perfluorooctanoic-acid. Accessed Oct 7, 2019.
Kerksick C, Willoughby D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr. 2005;2(2):38–44. doi:10.1186/1550-2783-2-2-38.
Šalamon Š, Kramar B, Marolt TP, Poljšak B, Milisav I. Medical and dietary uses of N-acetylcysteine. Antioxidants (Basel). 2019;8(5):111. doi:10.3390/antiox8050111.
Quig D. Cysteine metabolism and metal toxicity. Altern Med Rev. 1998 Aug;3(4):262-70.
Comentários